Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 15(3): 3816-33, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24595242

RESUMO

Tumor necrosis factor α (TNF-α) influences endothelial cell viability by altering the regulatory molecules involved in induction or suppression of apoptosis. However, the underlying mechanisms are still not completely understood. In this study, we demonstrated that A20 (also known as TNFAIP3, tumor necrosis factor α-induced protein 3, and an anti-apoptotic protein) regulates the inhibitor of apoptosis protein-2 (cIAP-2) expression upon TNF-α induction in endothelial cells. Inhibition of A20 expression by its siRNA resulted in attenuating expression of TNF-α-induced cIAP-2, yet not cIAP-1 or XIAP. A20-induced cIAP-2 expression can be blocked by the inhibition of phosphatidyl inositol-3 kinase (PI3-K), but not nuclear factor (NF)-κB, while concomitantly increasing the number of endothelial apoptotic cells and caspase 3 activation. Moreover, TNF-α-mediated induction of apoptosis was enhanced by A20 inhibition, which could be rescued by cIAP-2. Taken together, these results identify A20 as a cytoprotective factor involved in cIAP-2 inhibitory pathway of TNF-α-induced apoptosis. This is consistent with the idea that endothelial cell viability is dependent on interactions between inducers and suppressors of apoptosis, susceptible to modulation by TNF-α.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus , Western Blotting , Caspase 3/metabolismo , Bovinos , Células Cultivadas , Cromonas/farmacologia , Proteínas de Ligação a DNA/genética , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas Inibidoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Morfolinas/farmacologia , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Ubiquitina-Proteína Ligases
2.
PLoS One ; 9(2): e88143, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24520353

RESUMO

Related Transcriptional Enhancer Factor-1 (RTEF-1) has been suggested to induce angiogenesis through regulating target genes. Whether RTEF-1 has a direct role in angiogenesis and what specific genes are involved in RTEF-1 driven angiogenisis have not been elucidated. We found that over-expressing RTEF-1 in Human dermal microvascular endothelial cells-1 (HMEC-1) significantly increased endothelial cell aggregation, growth and migration while the processes were inhibited by siRNA of RTEF-1. In addition, we observed that Endothelial differentiation gene-1 (Edg-1) expression was up-regulated by RTEF-1 at the transcriptional level. RTEF-1 could bind to Edg-1 promoter and subsequently induce its activity. Edg-1 siRNA significantly blocked RTEF-1-driven increases in endothelial cell aggregation in a Matrigel assay and retarded RTEF-1-induced endothelial cell growth and migration. Pertussis Toxin (PTX), a Gi/Go protein sensitive inhibitor, was found to inhibit RTEF-1 driven endothelial cell aggregation and migration. Our data demonstrates that Edg-1 is a potential target gene of RTEF-1 and is involved in RTEF-1-induced angiogenesis in endothelial cells. Gi/Go protein coupled receptor pathway plays a role in RTEF-1 driven angiogenesis in endothelial cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Proteínas Musculares/metabolismo , Neovascularização Fisiológica/genética , Receptores de Lisoesfingolipídeo/genética , Fatores de Transcrição/metabolismo , Animais , Agregação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Toxina Pertussis/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Esfingosina-1-Fosfato , Fatores de Transcrição de Domínio TEA
3.
Am J Physiol Heart Circ Physiol ; 306(2): H233-42, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24213609

RESUMO

The related transcriptional enhancer factor-1 (RTEF-1) increases gene transcription of hypoxia-inducible factor 1α (HIF-1α) and enhances angiogenesis in endothelium. Both hypoxia and inflammatory factor TNF-α regulate gene expression of HIF-1α, but how RTEF-1 and TNF-α coordinately regulate HIF-1α gene transcription is unclear. Here, we found that RTEF-1 interacts with p65 subunit of NF-κB, a primary mediator of TNF-α. RTEF-1 increased HIF-1α promoter activity, whereas expression of p65 subunit inhibited the stimulatory effect. By contrast, knockdown of p65 markedly enhanced RTEF-1 stimulation on the HIF-1α promoter activity (7-fold). A physical interaction between RTEF-1 and p65 was confirmed by coimmunoprecipitation experiments in cells and glutathione S-transferase (GST)-pull-down assays. A computational analysis of RTEF-1 crystal structures revealed that a conserved surface of RTEF-1 potentially interacts with p65 via four amino acid residues located at T347, Y349, R351, and Y352. We performed site-directed mutagenesis and GST-pull-down assays and demonstrated that Tyr352 (Y352) in RTEF-1 is a key site for the formation of RTEF-1 and p65-NF-κB complex. An alanine mutation at Y352 of RTEF-1 disrupted the interaction of RTEF-1 with p65. Moreover, expression of RTEF-1 decreased TNF-α-induced HIF-1α promoter activity, IL-1ß, and IL-6 mRNA levels in cells; however, the effect of RTEF-1 was largely lost when Y352 was mutated to alanine. These results indicate that RTEF-1 interacts with p65-NF-κB through Y352 and that they antagonize each other for HIF-1α transcriptional activation, suggesting a novel mechanism by which RTEF-1 regulates gene expression, linking hypoxia to inflammation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Simulação de Acoplamento Molecular , Proteínas Musculares/metabolismo , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Fator de Transcrição RelA/química , Fator de Transcrição RelA/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
4.
Circ Res ; 111(8): 991-1001, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22843786

RESUMO

RATIONALE: Related transcriptional enhancer factor-1 (RTEF-1) plays an important role in endothelial cell function by regulating angiogenesis; however, the mechanism underlying the role of RTEF-1 in the endothelium in vivo is not well defined. OBJECTIVE: We investigated the biological functions of RTEF-1 by disrupting the gene that encodes it in mice endothelium -specific RTEF-1-deficient transgenic mice (RTEF-1(-/-)). METHODS AND RESULTS: RTEF-1(-/-) mice showed significantly increased blood glucose levels and insulin resistance, accompanied by decreased levels of insulin-like growth factor binding protein-1 (IGFBP-1) mRNA in the endothelium and decreased serum IGFBP-1 levels. Additionally, the RTEF-1(-/-) phenotype was exacerbated when the mice were fed a high-fat diet, which correlated with decreased IGFBP-1 levels. In contrast, vascular endothelial cadherin/RTEF-1-overexpressing(1) transgenic mice (VE-Cad/RTEF1) demonstrated improved glucose clearance and insulin sensitivity in response to a high-fat diet. Furthermore, we demonstrated that RTEF-1 upregulates IGFBP-1 through selective binding and promotion of transcription from the insulin response element site. Insulin prevented RTEF-1 expression and significantly inhibited IGFBP-1 transcription in endothelial cells in a dose-dependent fashion. CONCLUSIONS: To the best of our knowledge, this is the first report demonstrating that RTEF-1 stimulates promoter activity through an insulin response element and also mediates the effects of insulin on gene expression. These results show that RTEF-1-stimulated IGFBP-1 expression may be central to the mechanism by which RTEF-1 attenuates blood glucose levels. These findings provide the basis for novel insights into the transcriptional regulation of IGFBP-1 and contribute to our understanding of the role of vascular endothelial cells in metabolism.


Assuntos
Glicemia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células Endoteliais/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Proteínas Musculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Glicemia/genética , Proteínas de Ligação a DNA/genética , Células Endoteliais/citologia , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Células HEK293 , Audição/fisiologia , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Obesidade/genética , Obesidade/metabolismo , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
5.
J Vasc Res ; 49(3): 249-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22433836

RESUMO

OBJECTIVE: Related transcriptional enhancer factor 1 (RTEF-1) is a key transcriptional regulator in endothelial function. In this study, we investigated a possible role for RTEF-1 in the regulation of microvascular relaxation and the underlying mechanism involved. Activation of fibroblast growth factor receptor 1 (FGFR1) by FGFs increases vasodilation, although transcriptional control of the molecular mechanisms underlying FGFR1 is still unclear. MATERIALS AND METHODS: We demonstrated that RTEF-1 stimulated FGFR1 expression at the transcriptional level, specifically an area including Sp1 elements, as evidenced by promoter assays. Additionally, RTEF-1 increased FGFR1 mRNA and protein expression in vitro and in VE-cadherin-promoted RTEF-1 (VE-Cad/RTEF-1) transgenic mice, whereas RTEF-1 siRNA blocked the upregulation of FGFR1 expression. Furthermore, increased endothelial-dependent microvessel relaxation was observed in the coronary arteries of VE-Cad/RTEF-1 mice, and increased proliferation was observed in RTEF-1-overexpressing cells, both of which correlated to increased FGF/FGFR1 signaling and endothelial nitric oxide synthase (eNOS) upregulation. Our results indicate that RTEF-1 acts as a transcriptional stimulator of FGFR1 and is involved in FGF pathways by increasing microvessel dilatation via eNOS. CONCLUSIONS: These findings suggest that RTEF-1 plays an important role in FGFR1- stimulated vasodilatation. Understanding the effect of RTEF-1 in microvessel relaxation may provide beneficial knowledge in improving treatments in regards to ischemic vascular disorders.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Endotélio Vascular/fisiologia , Microvasos/fisiologia , Proteínas Musculares/fisiologia , Fatores de Transcrição/fisiologia , Vasodilatação , Animais , Bovinos , Proliferação de Células , Células Cultivadas , Humanos , Óxido Nítrico Sintase Tipo III/fisiologia , Regiões Promotoras Genéticas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/análise , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA
6.
J Biol Chem ; 286(22): 20054-64, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21502320

RESUMO

Matrix metalloproteinase-9 (MMP-9) is important in numerous normal and pathological processes, including the angiogenic switch during tumor development and tumor metastasis. Whereas TNF-α and other cytokines up-regulate MMP-9 expression, interferons (IFNs) inhibit MMP-9 expression. We found that IFN-γ treatment or forced expression of the IFN-induced GTPase, mGBP-2, inhibit TNF-α-induced MMP-9 expression in NIH 3T3 fibroblasts, by inhibiting MMP-9 transcription. The NF-κB transcription factor is required for full induction of MMP-9 by TNF-α. Both IFN-γ and mGBP-2 inhibit the transcription of a NF-κB-dependent reporter construct, suggesting that mGBP-2 inhibits MMP-9 induction via inhibition of NF-κB-mediated transcription. Interestingly, mGBP-2 does not inhibit TNF-α-induced degradation of IκBα or p65/RelA translocation into the nucleus. However, mGBP-2 inhibits p65 binding to a κB oligonucleotide probe in gel shift assays and to the MMP-9 promoter in chromatin immunoprecipitation assays. In addition, TNF-α activation of NF-κB in NIH 3T3 cells is dependent on Rac activation, as evidenced by the inhibition of TNF-α induction of NF-κB-mediated transcription by a dominant inhibitory form of Rac1. A role for Rac in the inhibitory action of mGBP-2 on NF-κB is further shown by the findings that mGBP-2 inhibits TNF-α activation of endogenous Rac and constitutively activate Rac can restore NF-κB transcription in the presence of mGBP-2. This is a novel mechanism by which IFNs can inhibit the cytokine induction of MMP-9 expression.


Assuntos
Antivirais/farmacologia , Núcleo Celular/metabolismo , Fibroblastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferon gama/farmacologia , Metaloproteinase 9 da Matriz/biossíntese , Neuropeptídeos/metabolismo , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Antivirais/metabolismo , Núcleo Celular/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Fibroblastos/citologia , Proteínas de Ligação ao GTP/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos , Inibidor de NF-kappaB alfa , Células NIH 3T3 , Neuropeptídeos/genética , Fator de Transcrição RelA/genética , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP
7.
J Interferon Cytokine Res ; 31(3): 291-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20950129

RESUMO

Interferon-γ pre-exposure inhibits Rac activation by either integrin engagement or platelet-derived growth factor treatment. Interferon-γ does this by inducing expression of the large guanosine triphosphatase (GTPase) mouse guanylate-binding protein (mGBP-2). Inhibiting Rac results in the retardation of cell spreading. Analysis of variants of mGBP-2 containing amino acid substitutions in the guanosine triphosphate (GTP) binding domain suggests that GTP binding, and possibly dimerization, of mGBP-2 is necessary to inhibit cell spreading. However, isoprenylation is also required. Removal of the N-terminal GTP-binding globular domain from mGBP-2 yields a protein with only the extended C-terminal α-helices that lacks enzymatic activity. The ability of the C-terminal α-helices alone to inhibit cell spreading suggests that this is the domain that interacts with the downstream effectors of mGBP-2. Interestingly, mGBP-2 can inhibit cell spreading whether it is geranylgeranylated or farnesylated. This study begins to define the properties of mGBP-2 responsible for inhibiting cell spreading.


Assuntos
Proteínas de Ligação ao GTP/imunologia , Guanosina Trifosfato/imunologia , Prenilação de Proteína/imunologia , Proteínas rac de Ligação ao GTP/imunologia , Células 3T3 , Substituição de Aminoácidos , Animais , Proteínas de Ligação ao GTP/genética , Guanosina Trifosfato/genética , Humanos , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Mutação de Sentido Incorreto , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/imunologia , Prenilação de Proteína/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas rac de Ligação ao GTP/genética
8.
Trends Cardiovasc Med ; 21(1): 1-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22498013

RESUMO

The transcriptional enhancer factor (TEF) multigene family is primarily functional in muscle-specific genes through binding to MCAT elements that activate or repress transcription of many genes in response to physiological and pathological stimuli. Among the TEF family, TEF-1, RTEF-1, and DTEF-1 are critical regulators of cardiac and smooth muscle-specific genes during cardiovascular development and cardiac disorders including cardiac hypertrophy. Emerging evidence suggests that in addition to functioning as muscle-specific transcription factors, members of the TEF family may be key mediators of gene expression induced by hypoxia in endothelial cells by virtue of its multidomain organization, potential for post-translational modifications, and interactions with numerous transcription factors, which represent a cell-selective control mediator of nuclear signaling. We review the recent literature demonstrating the involvement of the TEF family of transcription factors in the regulation of differential gene expression in cardiovascular physiology and pathology.


Assuntos
Doenças Cardiovasculares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Proteínas de Ligação a DNA/genética , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética
9.
Mol Biol Cell ; 21(14): 2514-28, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20505078

RESUMO

Exposure of cells to certain cytokines can alter how these same cells respond to later cues from other agents, such as extracellular matrix or growth factors. Interferon (IFN)-gamma pre-exposure inhibits the spreading of fibroblasts on fibronectin. Expression of the IFN-gamma-induced GTPase murine guanylate-binding protein-2 (mGBP-2) can phenocopy this inhibition and small interfering RNA knockdown of mGBP-2 prevents IFN-gamma-mediated inhibition of cell spreading. Either IFN-gamma treatment or mGBP-2 expression inhibits Rac activation during cell spreading. Rac is required for cell spreading. mGBP-2 also inhibits the activation of Akt during cell spreading on fibronectin. mGBP-2 is incorporated into a protein complex containing the catalytic subunit of phosphatidylinositol 3-kinase (PI3-K), p110. The association of mGBP-2 with p110 seems important for the inhibition of cell spreading because S52N mGBP-2, which does not incorporate into the protein complex with p110, is unable to inhibit cell spreading. PI3-K activation during cell spreading on fibronectin was inhibited in the presence of mGBP-2. Both IFN-gamma and mGBP-2 also inhibit cell spreading initiated by platelet-derived growth factor treatment, which is also accompanied by inhibition of Rac activation by mGBP-2. This is the first report of a novel mechanism by which IFN-gamma can alter how cells respond to subsequent extracellular signals, by the induction of mGBP-2.


Assuntos
Movimento Celular/efeitos dos fármacos , Fibronectinas/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Interferon gama/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas rac de Ligação ao GTP/metabolismo , Substituição de Aminoácidos/genética , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Integrina alfa4/metabolismo , Melanoma/patologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Receptores de Fibronectina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA